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Effective attraction between like-charged colloids in a two-dimensional plasma
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The existence of attractions between like-charged colloids immersed in ionic solution has been discovered in
recent experiments. This phenomenon contradicts the predictions of Derjaguin-Landau-Verwey-Overbeek and
indicates a failure of mean-field theory. We study a toy model based on a two-dimensional one-component
plasma, which is exactly soluble at one particular coupling constant. We show that colloidal interaction results
from a competition between ion-ion repulsion and longer ranged ion-void attraction.
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I. INTRODUCTION nection with the problem of interactions among linear poly-
electrolyte moleculefl4].

Recent experiments show convincingly the existence of In the sections that follow, we shall first review the
attractions between like-charged colloids immersed in ionidlasma model in Sec. Il. Then in Secs. Ill and IV we calcu-
solution, in particular in the vicinity of a glass wall or when late the ion-ion and void-void interactions in the plasma sys-
the colloids are confined between glass wgll&]. This re-  tem, respectively. Section V puts the above results together
markable counterintuitive phenomenon is inconsistent wittPy treating the colloid as an empty region plus a fixed ion
the well established theory of Derjaguin, Landau, Verwey,Charge at the center. We have relegated the technical details
and OverbeekDLVO) and has generated various theoreticalS Much as possible to the Appendixes.
interpretations.

It was shown[3] that counterion correlation forces, be- [l. THE PLASMA SYSTEM
cause of the long range of the electrostatic potentials, are

usually not pair_wise additive. Many-quy effedi] and_ component 2D plasma systdit0]. Our approach is to map
Coulomb depletion force5] have been invoked to explain he classical plasma system into a quantum Hall system.

attractive forces between like-charged macroions. An exacsch an analogy allows one to describe the interacting ions
demonstration[6] proved that the nonlinear Poisson- iy terms of noninteracting electrons occupying certain quan-
Boltzmann mean-field equation cannot give attractions in thgum obitals and subsequently use tools already developed.
case of Dirichlet boundary conditions. The argument wasthe advantage of this approach will become clearer later
extended to a broader class of modéfsand boundary con- when we extend the same analogy to more complicated sys-
ditions [8]. Recently, there was a significant attempt basedems with fixed ion charges or/and empty regions present.
on nonequilibrium hydrodynamic effecf8].

In this paper, we solve a two-dimension@&D) one-
component plasma model exactly at a certain coupling con-
stant following the method of Jancovid0]. We have found The one-component 2D plasma system is composed of
a semianalytic method that extends the exact solution to th&imple ions embedded in a disk of uniform background
case in which colloidal particles are present. We treat th&€harge. Each ion carries a charge ofl; the disk has a
colloids in the plasma as empty regiofwids) from which ~ radiusr and an areal charge density @f. Throughout this
the ions are excluded. The colloid may have fixed charge ataper, we shall express all lengths in the unit ©f
its center. The analytic results obtained for small-sized col=1/\/7py. Thus, a unit circle contains unit amount of back-
loids show that while the ion-ion repulsion, which varies asground charge, and the charge neutrality condition can be

e (R is the separation distaricén this particular 2D  Written simply as
model, is strong at short distances, the ion-void attraction,

which varies asRZe*Rz, becomes dominant at large dis-

tances. The latter property is not normally found in conveny, v dimensions, it is convenient to use a complex number
tional mean-field approximations, and must come fromz=x+iy (in units of /) to represent the location ok(y).
strong correlation effects. For large-sized colloids, we aISCUsing 2. to denote the position of thith ion, we can solve
have numerical results that qualitatively agree with the an fhe 2D IPoisson equatidin which the chargés interact loga-
lytic ones. The present state of understanding of how to treéﬁthmically rather than with the usual 3Drlihteraction [17]

fluctuations beyond mean-field theory reliably is not very find th | | ial f th .
good despite the fact that this is an old problebi—-13. and find the total Coulomb potential energy of the system:

Thus, our exact results may serve as a testing ground for 1.0 n
more sophisticated approximation schemes. In addition, V== 2 |z-|2—2 In|zi—z]. 2.2
since this is a 2D model, the results are of interest in con- 2= S b

We start by reviewing the exact solution for the one-

A. The quantum orbital language

n=r2. (2.1
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Here the first term describes the attractions between the iorfal at this point to postpone treating the Coulomb interac-
and the background charge, and the second term represetitsns until after the thermal averages are done. Thus, we

the mutual repulsions among the ions themselves. switch the order of the summations and integrations in Eq.
At inverse temperatur8=1/kgT=2, the Boltzmann fac- (2.7) so that
tor reads:

n

I1 (zi—z)

1<]

? z=2 > (="l | dzyp(2) o (2)
2.3 7 {9 i=1

n
SR
i=1

n
Written in the above form, the Boltzmann factor can be iden- E{EP} % (=17t Qiﬂl (PilQp), (2.9
tified as the square of the determinant of a makfix

==

—-BV_ 2 where(i|j) is the Dirac notation for the inner product of the
e PV=|detM|?, 249 | . ) : .
ith andjth LLL orbitals. Notice that the summations over

with the matrix elements being the lowest Landau leve{Q} can be identified as a matrix determinant:
(LLL) wave functions studied in connection with the quan- | .
tum Hall effect[15]: .
> (=179 (PilQy=2 (-] (ilR)=detO,
{Q} i=1 R} =1
(2.9

i—1

Z; 2
Mij= i(z)) = ;F(i)eilzj‘ 2, (2.9

whereR=Qo-P 1 is the composite permutation @ and

The above wave function describes an electron occupying - and theoverlap matrixO defined by
theith angular momentum orbital in the LLL. In this quan- .
tum language, dél is a Slater determinant and represents Ojj =(ilj) (2.10
the Laughlin wave function at filling factar=1, describing . i o
a fully filled Landau level. Thus, the complicated Coulomb iS & matrix composed of LLL wave function inner products.
interactions are replaced by a simple Slater determinant. THgere, just as previously, the complicated Coulomb interac-
determinant representation of the Boltzmann factor was firsions are again replaced by a simple matrix determinant. Fi-
noted by Jancovidil0] prior to the discovery of the quantum Nally, we substitute Eq(2.9) into Eq. (2.8) to obtain
Hall effect. We recapitulatéand then extendhis argument
in more modern language. Zzz detO=n!detO. 2.11
1P}

B. The partition function
The immaterial factor ofn! will be dropped henceforth.
Through the quantum analogy, the statistical problem is re-
“duced to evaluating the overlap mati& and its determi-
nant. This is particularly simple in the present case; because
of orthonormality we know that matri© is an identity ma-

n
z=1] f dze A, (2.6  trix.
=1

Armed with this powerful quantum analogy, we proceed
to calculate the partition function of the system, by integrat
ing out all the ionic degrees of freedom:

This is nothing more than the norm of the Laughlin wave C. The plasma edge

function, and hence can be computed exactly. Substituting Near the plasma edge, physical properties are quite differ-
Eqg. (2.4 in Eg. (2.6) and expanding the determinant, we ent from those in the bulk. This motivates us to study the
have boundary effects separately. For simplicity, we are going to
be mainly interested in aoft boundary condition, which re-
n ) stricts the range of the ions’ angular momenta rather than
iﬂl f dz|detM| their positions. The ions can go anywhere in the complex
plane; nevertheless, they are most likely to be found inside a
n no_ disk with radiusr = \n because their angular momenta are
=11 J dz> > (=17 ]I v (z)vq(2), bounded byn [recall that thdth LLL state has angular mo-
- e - mentum of (—1) and peaks in a shelll— 1<r<\/]. The
(2.7 advantage of using this type of boundary condition is appar-
. ] ent: we can continue to use the same wave functions to de-
whereP and Q are permutations of1:n} (1:n is a short-  gcribe the ions near the edge. What is implicitly assumed
hand notation for 1,2 .. ,n) that come from the expansions here is that the uniform background charge does not cease at
of detM and detM, respectively. In Eq(2.7), we have both the plasma edge; it extends to infinity. We also note that in
summations and integrations which respectively represerthe thermodynamic limit {— ) the circular plasma edge
the Coulomb interactions and the thermal averages. It is uséecomes locally flat.

z
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One may also consider putting some ‘“surface” charge on o) P(w)
the plasma boundary. But, as indicated below, this effect can o= w(w) 0
be absorbed in shifting the position of the boundary. We (w

assume the surface charge, if any, does not fluctuate. D‘?—Iere,o (not to be confused witld™®) is thenx n overlap
pending on its sign, the boundary charge either increases Matrix defined in Eq(2.10; W=y, 1, ) is a row
decreas_es_ the number of a"?"ab'e angular_ momentum ChaUéctor of LLL wave functions representing the fixed ion
nels. This is more or less equivalent to varying the radiok charge, and¥ ' is its conjugate transpose. Finally, the re-

the plasma disk in a system with neutral boundary. Hencemaining summations oveiP, (..} in Eq. (3.1 just yield
without loss of generality, we may assume boundaries arg yivial prefactor: h(i=2:)

neutral.

Another type of plasma system we want to address in this
paper is a plasma strip with two parallel edges separated by ~ ZM= > —deto®=—(n—1)!det0®. (3.4
h. This can be realized in the thermodynamic limit by a {Pigi=2m}
system of ions with angular momenta ranging from (14 oyaluate the determinant of matr@®, we apply

2 2 H
—h/2)” to (r+h/2)°. The double edged system thus differs 5o rs theorentdiscussed in detail in Appendix)Bind find
from a single edged systeamly in the momentum range. To

avoid redundancy, we shall use the single edged system as 7= —detO")=detO def ¥ (w)O ¥ (w)];
the example in our calculations. By changing the angular

(3.3

momentum limits, the results can easily be transferred to _ . —
double edged systems. _gl (W) (w), 3.5
IIl. FIXED ION CHARGES IN A PLASMA where we have used the fact that the overlap maris an

identity matrix. Using Eq(A7), we convert the above series

.m this section, we shall apply the same method to 4nto translation coefficientéTCs) defined in Eq(A6):
slightly more complicated plasma system, with one or two

ion chargés) fixed at certain positiafs). The resulting parti- n - 1"
tion function is conventionally called the one- or two-body ZO=2 W) (W) == > [TaW)|®. (3.6
density function. The physical significance is twofold. First, k=1 T k=1
we can learn from these density functions about how the ionRI
are distributed and how two ions are correlated. More impor-
tantly, the fixed ion charges can be viewed as the limitin
case of small-sized charged colloids. Thus, the results ob-
tained in this section will provide us with many useful in-
sights to the colloidal interactions.

ow that the partition function is written in the form of a TC
um, we may use the TC sum rules listed in Appendix A 2.
e consider the following two cases.

If the fixed ion is in the bulk of the plasmavi<r = \n),
we may take the limih—co first and use TC sum rul@\14)

to obtain
A. The one-body density function 1
. . . . . zM=_ (3.7
First we consider the one-body density function. We fix T
the positionz;=w and integrate out the remaining ionic de-
grees of freedom, This tells us that deep in the bulk the ion density is constant

and equal to the background charge density everywhere.
Near the plasma edge, we assume the boundary is located
at (r+h/2) and the fixed ion is located at=re'’, so that
7=w the ion ish/2 away from the boundary. In this case, we can
use TC sum ruléA23) in Eg. (3.6) to obtain
=2 > (-1

z;=w (GRE) 7(L)s—

n
ZO=TT | dze #"
=2

n
=[] | dz|detm|?
1=2

1+ ® . (3.9

h )
. V2
X ‘/’Pl(w) 'z”Ql(W)i:Hz (PiQp)- 3.1 Here, the superscrimeans a single edged syst¢im con-

trast tod, which means double edged sysjeamd ®(x) is

The summations oveP; and{Q} then reduce to a matrix the standard error function. As shown in Fig. 1, the ion den-
determinant sity indeed drops from its bulk value to zero upon crossing

the soft plasma boundarat h=0).

2m

n
; {EQ} (P QZPl(W) WQl(W)HZ (Pi|Qy=—detO™), B. The two-body density function
=
' (3.2 In calculating the one-body density function, we find that
a fixed ion charge amounts to an additional row and column
with the (n+1)x (n+1) matrix O") defined by in the overlap matrix. This result can be generalized for sys-
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FIG. 1. The one-body density function near the plasma edge

(length in units of/).
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2 _h2
eh

—2} . (3.13

7R

h

V2

The above result shows that the ion-ion correlation function
has a power law decay near the plasma edge. This is funda-
mentally different from the bulk behavior, and is due to the
dipole moments induced by the sharp cutoff in angular mo-
mentum.

Finally, in the double edged system where the plasma
edges are located at £h/2), we may use TC sum rules
(A30) and (A33) in Eqg. (3.1)) to obtain(for asymptotically
largeR)

z(2>S=4i 1+

7_[_2

zPH=— | p? . (3.1

1
2

—h2
l) - e—RZ Si(hR)

\/E 2

tems with multiple fixed ion charges. In particular, we con-Here, we find the correlation is not only long ranged, but

sider the two-body density function withy=w and 22=W
fixed. The result is

Z@)=—det0®, (3.9
whereO® is an (1+2)X (n+2) matrix:
o  viw) whw)
0@ =| ¥(w) 0 0 (3.10
Y(w) O 0

Similarly, using Schur’s theorem and E&7), we can write
the correlation function in terms of TC sums:

W (w) _
2(2)=det0det( ( o~ w'(w) ‘PT(W)])
\P( 2X2

2

. (31D

Z T§1(W)
k=1

1[2 2
Zp[gl |Tkl(W)|2} ——

In the bulk of the plasmaw<r), we assumev=iR/2 so
that the two fixed ions ar® apart. Inserting TC sum rules
(A14) and (A15) into Eg. (3.11), and using Eq.(A9) for
T14(iR), we obtain

1 1 2
():— — 1 = —x —a
z 772[1 IT1a(iR)[?] 7_rz(l e f). (312

The above result tells us that the Coulomb repulsion between

oscillating with a period of Zh~* as well.

C. Divalent ions

A divalent ion can be viewed as composed of two simple
ions occupying the same place. Here we want to calculate the
two-body density function for a pair of divalent ions embed-
ded in the monovalent plasma. Let us assupez,=w and
z3=2,=W are fixed, wherav=1R/2, so that the two divalent
ions areR apart. Naively, one may follow Eq3.10 and
write down an (+4)X (n+4) matrix:

-0 Wz Wz Wi(zg) Wi(zg)T
V(z;) O 0 0 0
d@=| ¥(z,) 0 0 0 0
V(zs) O 0 0 0
| ¥(z) 0 0 0 0
(3.1

However, the matrbXO*) defined above is singular because
z,=2, (or zz=12,). This singularity actually originates from
the Boltzmann factor in Eq2.3), where we incorrectly in-
clude the self-interaction between andz, (or zz andz,).

To get around this problem, we must extract the singular
factors from the matrix determinant. More precisely, we
want to consider the following limits:

det0(z,,2,,25,24)
deto®= lim lim .
2p—2974—123 | Z— le |Z4_ Z3|

(3.1

the two ion charges is heavily screened by the other ions and

becomes short ranged. Its decay has a Gaussian form, whigh, -onstruct matrix0® from 0@, we subtract¥ (z,) in the
is much faster than the exponential form that DLVO theory(m_ 1)th row fromW(z,) in the (n+ 2)th row in Eq.(3.15.

predicts.

The resulting 0+ 2)th row then yields a factor ofzf—z,):

Near the plasma edge, we assume the boundary is located

at (r +h/2) and the fixed ions are locatedwat=re'? andw,
where #/=R/2r so that the fixed ions are/2 away from the
edge andR apart from each other. Using TC sum ru(ég3)
and(A26) in Eq. (3.11), we obtain(for asymptotically large
R)

lim [W(z;) =W (z1)]=(2,—2)¥'(21),

Zp—1Z7

(3.17

whereW'= (1,45, ... ), andy’ is the first derivative
of . More precisely, following the usual procedure for the

021402-4
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Hilbert space of analytic functiond 5,16, we take the de- singularity.

rivative to act only on the analytic part @f and not on the The factors of ¢,— ;) and|z,— z3|2 can be extracted via
Gaussian factor. The latter represents the interaction with theimilar procedures and we are left with a matrix that looks
background charge and does not possess the self-interactibke

T 0 Wiw) ¥U(w) wlw) wT(w)]
W(w) 0 0 0 0
oW=| ¥’ (w) 0 0 0 0 (3.18
W (w) 0 0 0 0
| v'(w) O 0 0 0 |

Applying Schur's theorem and using various TC sumcircular disk with finite radius, inside which ions are ex-

rules listed in Appendix 2, one finds cluded. The presence of the voids clearly destroys the sys-
tem’s azimuthal symmetry. As a result, different angular mo-
Z*)=—deto™® mentum orbitals intersect, and the overlap matrix is generally

&2 not diagonal. It is the off-diagonal matrix elements that make
1 0 € 0 the colloidal interactions nontrivial.

0 1 Re R2 o R2 We shall fix the two voids atv andw, respectively. Fol-
et o, R lowing Eq.(2.11), we can write down the partition function
™ e Re 1 R of the system as the determinant of the overlap matrix:

~R%2 2
0 e R 1+R Z=detO. 4.1)

1 . . , ,
= _4[(1_e—R2)2_ R%e™ RZ]_ (3.19  Because the regions occupied by colloids are not accessible
T’ to the ions, their contribution to the overlap matrix should be

) i ) ) excluded. Thus, in contrast to E@®.10, here we have
To compare the correlation functions of divalent ions and

simple ions(in the bulk casg we plot Eqs(3.12 and(3.19 O =iy = (il )w=(ili > (4.2)
in Fig. 2. Clearly, the divalent ion has a larger “exchange
hole” near its origin. where(i|j), means a partial inner product integrated over a
circle with radiusa centered atv. According to Eq(A8), Eq.
IV. VOID COLLOIDS IN A PLASMA (42) can be eXpIICItIy evaluated iSS]
In this section, we introduce two empty colloidal voids o
into the plasma system. We take the colloidal particle to be a Ojj=dij— 21 nTa(w)Ty(w)+c.c, (4.3
1 where y, is the incomplete gamma function defined in Eqg.
(A4).
0.8} ,
s A. Analytic results
0.61 / The off-diagonal matrix elements make the determinant in
N / Eq. (4. difficult to analyze. However, if the colloidal size
0.4} ; is small, we can treat them perturbatively. From Eg) we
know y;~0O(a?) whena—0. Thus, to the lowest order
0.2t / we can truncate the infinite summation in E4.3) atl=1:
. / — Divalention
K --- Simple ions — —
. ‘ . . Oij= 68— va [ Tia(W) Tj2(W) + Tin(W) Tjr(w) 1. (4.4)
0 1 2 3 4 . .
R If we define a 2Xn matrix J as
' FIG. 2 Compari§on_ between_ the two-body density _fuqctions for Ta(W) To(W) - Tog(w)
divalent ions(the solid ling and simple iongthe dashed linein the = - o , (4.5
bulk (Ilength in units of/). Ti(w)  Toy(w) -+ Tphr(w)
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Eq. (4.4 may be rewritten in a matrix form:

0.25 " :
—
: ---  a=0.
0=1-J"y,J. (4.6 0.2 N a=1.0
According to the corollary of Schur’s theordisee Appendix N .\\.\
B, Eqg. (B3)], we have N0.15 . |
T \ i
] v \
de(1-3"y;d) nxn=de(1-Jy,3") 5. 4.7 @ 0.1 N\ Y
The determinant of a:2 2 matrix is easy to calculate and the 0.05}
result is(dropping terms with order higher than) ) N
n 01 - > \2\\-\_\_\_‘\‘ ..... . i
Z=det0~1—2( 2, |Tk1<w>|2) n=1-2y, (48 ® R
k=1
FIG. 3. Numerical results for the free energy of colloidal voids
where we have used the TC sum r#€l4). Notice that the

of radiusa in the bulk of plasma separated by a distaRcéength
above(first orded result isR independent. This is no acci- in units of /).
dent, because in order for the colloids to know the separation

distanceR, the Green’s function needs to be integrated over

For colloidal voids immersed in the bulk of the plasma,
both colloidal regions, which yields a term proportional to our numerical results are presented in Fig. 3. For a variety of

a*, appearing in at least the second order in perturbatiosizes we studied, no attraction is found, confirming our ana-
theory. lytic predictions.

In the second order approximation, we must keep terms Near the plasma ed@®, we find it more convenient to
proportional toy;, 3, andy,. The procedure is quite simi- use square shaped colloids in numerical calculation. We as-
lar to the above, and the result is sume the squares are of siza, Zentered ate'? andre '’

respectively.[The plasma edds) are located atr(+h/2).]
i ) " , Defining S=a/r, we can calculate the overlap matrix in Eq.
Z=1-2| 2, TaW)?|71-2| 2 [TeW)?| 7. (4.2 as
n 2 n 2 r+a 6+6 piﬂ*le*PZei(j*i)(ﬁ
2| _ 2 2 O;i=6;— f d f d +c.c.|.
+ kzl [Ta(w)] ) IZl TiaW) | [v1. 4.9 g g ra P s ¢ - /F(i)F(j)
(4.12
Compared to Eqg3.6) and(3.11), we find that the first and

second order terms are, respectively, proportional to the ond? the limiti~j~r2—c, the above integral can be evaluated
and two-body density functions. Hence the colloidal void-@Symptotically. The result is

void interaction does not differ very much from the ion-ion

interaction we studied earlier in Sec. lll. L (i+j)/2)

In the plasma bulk, we assurme=iR/2 and use TC sum Oij=6;;—C(6,9) THTG) [O(ry)—D(r)],
rules(Al4) and (A15) in Eqg. (4.9 to obtain 4.13
Z~1-2y1-27+(1-eF)¥d (410 where,
near the plasma edg®, we assumev=re'’ (§=R/2r) and 2
express Eq(4.9) in terms of TC sum-rule results: r.= (rxa)y”—(i+j)i2+ 1;
Zo9~1=2A%1 1= 2A%; v, + [(AR) = [BI1 %174,
4.1 cog(i—j)alsin(i—j)o
(4.11 C(0,5= LLIZDOISING ~])3]

where the explicit forms foA>9 andB>¢ for asymptotically (i=))m

largeR can be found in Eq$A23), (A26), (A30), and(A33). . . )
[C(#,0) should be interpreted a¥ 7 in the case of=j]. In

_ practice, we keep increasimguntil the numerical result be-
B. Numerical results

comes independent af which is found to occur approxi-
For large-sized colloids, the analytic results based on thenately atr =60. The results shown in Fig. dor a single

smalla expansion may not be appropriate. We resort to nuedged systeinand Fig. 5(for a double edged systenare
merical methods and use L[19] factorization with partial computed using =100. In both figures, when the colloidal
pivoting to evaluate the matrix determinants. We find thatvoids are far away from the ed@e (h=6.0), the curves are
(essentially exact results can be obtained from relatively similar to those in Fig. 3, namely, the repulsive interaction

small matrix sizes. has a Gaussian decay. As the colloids become closer to the
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- whereW = (1,4, ..., is a row vector representing the
0.5/ h:gjg_ fixed ion charge at the colloidal center; time<n overlap
) Eﬂ -g matrix O, according to Eq(4.3), is nondiagonal:
. 0.2r 7 0
N _
_:IO.15- Oij:(sij_ lZl ’}/|Ti|(W)TJ'|(W)+C.C. . (53)
] -
=
0.1 _
A. Analytic results
0.05¢ If the colloidal sizea is small, we can obtain an analytic
s LT expression. One may truncate the infinite series in(B®)
% 25 3 35 4 atl=1:

FIG. 4. Numerical results for the free energy of empty colloids Ojj~ dij = yal Tit(W) T2 (W) + Tin(W) Ty (W) . (5.9

of radiusa=1.0 and located a distandg2 away from a single

plasma edge as a function of their separafofiength in units of However, we notice that ther-1)th and 6+ 2)th rows of

matrix O in Eq. (5.2 can be written as

7o)
plasma edge) (smallerh), the repulsion starts to develop a 0@ |~y (w)= Tj1(w) 55
long tall, in agreement with our analytic results. (n+ 1) = (W)= Jz :
V. CHARGED COLLOIDS IN A PLASMA P
O, 5 = (w) = 11 5.6
We now consider charged colloids in the plasma. In the (n+2); = (W) = Jz (5.6

simplest case, the charged colloid is taken to be an empty

disk plus a fixed ion charge at the center. The ion-ion inter- _ — .
action and void-void interaction have been studied in Secd! We multiply Eq. (5.5 by 'y Tiy(w), multiply Eq. (5.6)

Il and 1V, respectively; both are repulsive. However, as wePY VayiTia(w), and add them together to tiien row, the

shall see in this section, the ion-void interaction is usuallyof-diagonal part of0;; in Eq. (5.4) is canceled completely.

attractive, and has a longer range. The competition betweefhUS the final answer does not contaip This is true even
the repulsion and attraction results in a richer behavior foff We do not make any truncations in E.4). Physically, it
the charged colloidal interactions. originates from the fact that the first angular momentum

Following Egs. (3.9 and (3.10, we have the partition Cchannelis occupied by the fixed ion, so it is not accessible to
function as follows: the free ions. Another way of saying this is that the fixed ion
serves as a ‘“Laughlin quasihole” in the quantum electron

Z@=—det0®?, (5.1)  system.
To obtain a nontrivial result, we consider the second an-
o) Tiw) whw) gular momentum channéf=2:
(2)= — _
o= ¥w) 0 0 (52 04y~ 8= ¥l TraW) T (W) + ToW) (W), (5.7
¥ (w) 0 0

Applying Schur’s theorem, we have

=5 T(w) _
028t \N L hei 6] Z@=detO de — (O7 W (w)  WT(w)]
h=1.0 W(w) 2%2
02 ]
T 0.15¢
-y We first concentrate on the second fadfgr It describes the
0.1 two fixed ions(represented by wave functionk and ¥'™)
interacting through the plasma mediumepresented by ma-
0.05 - trix O~ Y). For small y,, the matrixO~! can be approxi-
S i i mated by
% 25 3 35 4 - B
R O 1~ 8+ yol Tio(W) Tja(W) + Tin(W) Tip(W) ], (5.9)

FIG. 5. Numerical results for the free energy of empty colloids )
of radiusa= 1.0 separated by a distanRén a plasma strip of width and Z, can be calculated to bsuppressing théw) argu-

h (length in units of/). mentg

021402-7
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n 2 n 2 n 0.05 T T T T u
2| [ ] -2 7] [r2n [ S ] T
k=1 k=1 k=1 /X a=1.0
n 2 n n 2
X| 2 TiaTie| +| 2 [Tial?]| 2 TiaTwe N
k=1 k=1 k=1 E N
1o | R
n n n n I; o7 . -
=) =
—( > T (2 Tlekz)(E Tlekz)—( > Til)
k=1 k=1 k=1 k=1
n n ii
x| > Tlekz) > TaTe (5.10 0.05 . WA . .
k=1 k=1 1 1.5 2 25 3 35 4

W? can interpret the. above result by thinking of the .colloi.dal FIG. 6. Analytic results for the free energy vs separation dis-
VOIdS.aS a perturbation to _the plasma_\ system plus fixed 10NFanceR of singly charged colloids in the bulk of the plasithength
The first square bracket in E@5.10 is the result for the i, inits of /o).

unperturbed system, namely, the ion-ion interaction via the

plasma medium. Itis precisely the two-body density functiongyay from the origin, in which case the attraction is strongly
we obtained in Eq(3.11). The second square bracket in Eqg.
(5.10 is the first order correction, namely, a fixed ion on one
site interacting with the colloidal void on thaher site. This
ion-void interaction is usually found to be attractive, and
since it involves higher order TC sums, its range is longe
than that of the ion-ion repulsiofsee results belowSo far,

suppressed by the decaying faceo‘rRz, thus becoming vir-
tually invisible.

Near the plasma edge, we use TC sum rulé23)
I1hr0ugh(A27) to obtain(for asymptotically largeR)

Y
we have missed another first order effect, namely, the fixed (2)s_ (AS)2—
ion interacting with the colloidal void on theamesite. The W onR?

excess background charge underneath the void should reduce

the effective ionic charge somehow. It turns out that this (ASh2+ A3, e "~ (2h/\[27r)e 32

renormalization effect is captured precisely by the first factor T2v2 2 R2
. 7R
Z,in Eq. (5.9
e
n +AL| == —ALAY (5.14
(5.11) V2w

Z,=detO~1-22, |Tis|%ya.
k=1

Similarly, for the double edged system, we use TC sum rules
In the bulk plasma, we assume=iR/2 and use TC sum (A30) through(A34) to obtain

rules(A14) and (A15) to obtain
—n2
e
Z@d~| (A2

( 11 2’7TR2

sirf(hR)

Z@~(1-2y,)(1-e R +2R% Ry, (512

[AY h2co@(hR) +AL,si(hR)]e ™
27R?

In the above equation, the first term is the renormalized ion-
ion repulsion and the second term is the ion-void attraction. +2y;

The attraction is proportional tﬁze*Rz, which has a longer
range than the repulsion. This feature is not found in mean-
field approximations, and thus must be caused by the strong
correlation effects. Notice that the void-void repulsion and
the renormalization of the ion-void attraction are both of
second order, so they do not appear in &g12. The repul-
sion and attraction respectively dominate the short distance
and long distance behavior, and the minimum free energ
BF=—1InZ? occurs where the first derivative vanishes:

dZ(Z)(R*)_O . [1
Tdr 0 T TNy,

Figure 6 plots the calculated free energy Rdor various in the analytic studies.
values ofa. Note that, wheny, is small @=0.6), Eq.(5.13 We also tried putting double ion charges at the center of
predicts that the location of the free energy minimum is fareach colloid. This case is very similar to the divalent ions

- (A&H)ZA;‘z} : (5.15

B. Numerical results

Our numerical results for charged colloids in the bulk
Yase are plotted in Fig. 7. Wheris small @=0.6—0.8) the
numerical results agree very well with the analytic ones pre-
sented in Fig. 6. However, whexis large @=1.0), the two
differ significantly in that the numerical free energy has an
additional secondary maximum. This peak reflects the even
longer ranged, second order effects that are not accounted for

(5.13

021402-8
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0.05

o=ho ]
WO

f
0.04} n
h

B F=—In(2)
B F=—In(2)

05— 2 25 3 35 4 V%% 3 35 4 a5

FIG. 7. Numerical results for the free energy vs separation dis-
tanceR of singly charged colloids of radiua in the bulk of the
plasma(length in units of/).

FIG. 9. Numerical results for the free energy vs separation dis-
tanceR of singly charged colloids near a single plasma edge; case |,
a=0.8 (length in units of/).

gg[t:éeiﬁtg%e% 'r\',vﬁgfé ltlr:é:.cc())lllé)ri dnalfrgiigzag:gsggtssg;e tgrel;l'hese results are consistent with the analytic results. Note
) C - ) at the oscillation “wavelength,” according to E.15), is

V2 times as large as those in Fig. 7, so that the two f|gure§et by the strip width, and igs independen%J of th(i5 sgeof

are comparable. We see that the qualitative behavior is very o colloids. This conélusion is confirmed by Fig. 12

similar. Tr?e alttractlon minimum stays further out. lloi Finally, Fig. 13 shows the results for doubly charged col-
Near.t € plasma qu?’ we use squares to represent CO%ids near a single plasma edge. They are qualitatively simi-

dal partu_:les as we did in Se_c. IV B. The nume_nca_ll result ar to those shown in Fig. 10,

for two different sizes of colloids are presented in Fig. 9 an

Fig. 10. In case 1 §=0.8, Fig. 9, when the colloids are far .

away from the edgeh(=5.0) they repel; as they come closer C. Where does the colloid stay?

to the edge ff=2.3) they start to attract each other within a  To better understand the charged colloidal interactions,

certain range R<2.25), but beyond that range they still re- especially near the plasma edge, it is instructive to learn

pel; at a particular pointh(=1.5), the range of the attraction where they prefer to stay in the plasma. We put a charged

seems to extend to infinity; finally, when they are too closecolloid atw=re'?, which ish/2 away from the plasma edge

to the edge §=0.8), due to insufficient screening, a long at (r +h/2), and calculate the partition function to be

range repulsion is found. In case l&€0.9, Fig. 10, the s 1

colloids are larger in size and attract each other even in the z{e= —detO), (5.16

bulk (h=5.0); the attraction becomes deepér=(2.0) and

longer ranged t{=1.3) as the colloids move toward the

cage, o { 0 ‘PT(W)} 517
Figure 11 shows the free energy of colloids in a double ¥ (w) o J '

edged system. When the two boundaries are widely sepa-

rated (=5.0), the colloids repel; as the separation de- o

creases, the free energy develops a long oscillating taiWvhere thenxn overlap matrixO is

0.05 :
I h=5.0|
0.06 =29
h=1.3
h=0.6
0.04} 1
) )
E =
T o} T 0.02}
" 1}
(T8 [T
[-=N ==X
/ or
.l"
/ 8
i -0.02 '
N N L iy L n L . L . .
-0.05 1.5 2 2F.‘5 3 35 4 2 25 3 3.5R 4 45 5

FIG. 8. Numerical results for the free energy vs separation dis-
tanceR of doubly charged colloids of radius in the bulk of the
plasma(length in units of/).

FIG. 10. Numerical results for the free energy vs separation
distanceR of singly charged colloids near a single plasma edge;
case Il,a=0.9 (length in units of/).
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0.12p T 0.04 —
oal: h59 o 32
N h=1.5 008 | —— ho1§
0.08 h=0.8 | 002t I
< 0.06f | = Y
S _‘ S 0.01r ' e
I ! =3 1 Nocem T T T T e e e
g 004 £ ol ", .
[-=8 ! 1 .
0.02f | s
: 001} /
of - ¥=d N
. S —0.02 N
-0.02} N ;
2 25 3 35 4 45 003, 3 4 5 6
R R

FIG. 11. Numerical results for the free energy vs separation FIG. 13. Numerical results for the free energy vs separation
distanceR of singly charged colloids near double plasma edges; distanceR of doubly charged colloids near a single plasma edge;
=0.8 (length in units of/). a=1.2 (length in units of/).

o lowest available angular momentum channel. The optimal
0j;=&j _2 y,ﬂ(W)T”(W). distanceh* is in the range in which attraction between col-
=1

(5.18 .
loids occurs.
It can be shown that the first angular momentum channel is

blocked by the fixed ion charge so that the final answer does

VI. SUMMARY
not depend ory,. For smalla, we truncate the infinite sum-

In this paper, we considered a strongly couplgh=@2)
mation in Eq.(5.18 atl =2 and use Schur’s theorem to find 2D one-component plasma model and calculated the effec-

n 2
z“’s%{l—Z [Tizl?7
=1

tive interaction between two colloids both in the bulk and
near boundaries. Our calculations show that the interaction

n
> T2+
i=1

n
> TiuTi
i=1

s between colloids results in a competition among the ion-ion
and void-void repulsions and the ion-void attraction. While it
is somewhat difficult to assign a clear and simple physica
o2 hat difficult t I d ple ph I
o
=AL+ o _AilAgz) Y2- (5.19

mechanism to the net attraction, the model clearly contains
both excluded volume effects analogous to those that pro-
duce attraction in hard sphere systems and also strong non-
Figure 14 shows the numerical results obtained for dinear(and fluctuating non-mean-figldcreening of the long
square charged colloid. We plot the free enegly as a  'ange Coulomb forces. O_Lagssentlally exagtnumerical re-
function of h for three different sized squares. In all cases,Sults also show that proximity to the boundary of the plasma
we find the colloid is attracted to a free energy minimumenhances the strength and range of the attraction. This is
near the plasma edget h=0). Forh<0, the free energy presumably due' to softer f!uctuatlon modes available near
quickly blows up. This tells us that the colloid prefers not to the edge of the incompressible plasma. o _
leave from the plasma edge, because its fixed charge is at- In this paper, we have assumed a logarithmic potential
tracted by the background charge and prefers to be in th@Mong the ions. 1117], we argued that this is not entirely

unfaithful to the real physical system. The fact that the
0.02} 1
0.
0.5
N
£-0.02r <
i =4
w ||| or
2_0.041 u
==§
=
— F ; --- a=0. 1
0.06 P asl0 -0.5
0825 3 _ 35 4 a5 1 .
R —2 1 0 1 2
FIG. 12. Numerical results for the free energy vs separation

distanceR of singly charged colloids near double plasma edges;
=1.5(length in units of/).

FIG. 14. Numerical results for the free energy for one singly
charged colloid near a single plasma edigagth in units of/).
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plasma has one component rather than two is a more seriowhere f(z) is an analytic function. Thus the subspace
limitation which we hope to remedy in the future. Although spanned by the LLL wave functions is isomorphic to the
our model is oversimplified, the exact results provide usefuHilbert space of analytic functiongl5,16. An example is
insights into the problem, and can serve as a testing grounithe wave functiony;(z) with its argument translated by a
for approximation schemes currently in use. vectorw:
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The linear coefficientd;; defined in Eq(A6) are termed

APPENDIX A: PROPERTIES OF LOWEST LANDAU translation coefficientsSettingz=0 in Eq. (A6), we find

LEVEL WAVE FUNCTIONS .
Pi(w)= E T;i(w)i(0)= —il(W) (A7)
' =1 4 ! N

A convenient formulation of quantum mechanics within

the subspace of the lowest Landau level was developed by
Girvin and J.ach[15,1@_. Here, we fOHO\.N their formalism Thus the LLL basis functions are just special cases of TCs.
and summarize some important properties that are frequently, ey yseful application of the TC is to calculate the par-
used throughout the paper. tial inner product on a circle with radiua centered atw

_ #0 (denoted by the subscrijpt
1. Orthonormality and completeness

Theith LLL wave function is defined as <i|j>wzf dz i (z+w) i(z+w)
|z<a

o — i—1g-l2%2, Al = —
i(2) \/Wr—(i)z e (A1) =fZ|<adZ; Tik(W)'ﬁk(Z)"bl(z)TJI(W)

These LLL wave functions are orthonormal:

Tic(W)(K[1oTji(w) = 21 YT (W)Tj(w).

1= [ dzm@uz= o, (A2 g

(A8)
Sometimes, we want to calculate a partial inner proditinet
overlap integrated over part of the entire plarend the re-
sult is generally not diagonal. However, if the integration
region has azimuthal symmetry, the conservation of angul
momentum guarantees an exception. As an example, let
take the region to be a circle with radiascentered at the
origin (denoted by the subscrjpt

The TCs can be evaluated explicitly. We multiply by

#(2) on both sides EqA6), and integrate over the entire
lane. On the right hand side, this picks out one particular
4k from the summation because of the orthonormality:

Tik(W):J dz é;W*ZW)’ZEk(Z)wi(ZJrW)

<|> fa d Zﬂd(;b pi4’]-*Zefpzei(j*i)(75 5 e_lw‘Z/z , -
iiYo=| pdp —— =8V, = | dze ATk Lz )it
0 0 aL(D)T()) : J
(A3) wI'(i)I'(k)
. o e Iwl?r2 “(—w)z
where the incomplete gamma functignis defined as = | qzel?® 2 Zk-1
A mT ()T (k) =0 t
1 faz - , "21 a2k |
Vi= = due Y *=1-e2 —. (A4) . 4
TG Jo i=o k! % 521 C!s:llzs—lwl—s
Notice that in the limita— 07y;~0(a?). _ . )
From Eq.(Al), it is clear that any wave function in the =T ()T (K)(— 1) w' ke~ W2
LLL can be written in the form min(i k) (—1)w[i k-2
X - , A9
W(z)="f(z)e” 122, (A5) 521 I'(s)(i—s)!(k—9)! (A9)

021402-11



NING MA, S. M. GIRVIN, AND R. RAJARAMAN PHYSICAL REVIEW E 63 021402

where, in the third equation, we used Taylor and binomialTC sum is the following. Treated as a perturbation, colloids
expansions, and in the fourth equation we used orthonormaln the bulk mainly perturb the low angular momentum chan-
ity (A2). Equation(A9) immediately tells that the TCs have nels. Such a perturbation has a discrete characteristic,

the following inversion symmetry: namely, only a small number of channels are strongly af-
o _ fected. Colloids near the boundary, on the other hand, per-
Ti(wW)=Ti(—w)=T;i(—w). (A10)  turb the high angular momentum channels. The perturbation

) ) has a continuum nature, namely, there are a large number of
Another important property of the TC arises when one:phannels (2—hr<k<r2+hr) that are weakly affected. As

composes two successive translations: a result, the evaluation of the edge TC sum inevitably re-

- o quires one to convert the discrete summation into a con-
Tij(W1+W2)=e(W1Wz*W1W2)’22 T (W) Ty (Wa). tinuum integral. For example, let us calcula®, :
k=1
(A11) (r+hi2)? p2k=2 ,
. . S =lim > e "
On using Eq(A10), this becomes e k=1 (k)
T--(W1+W2)=e(V_V1W2_W1W2)/2§ ?k'(_Wl)Tk'(WZ) ~ lim r2+hr£ g2xInr+x=xIn x—r2 (A20)
" =T ! e JO O \2mX '

(A12)
where we have definedk=k—1 and used Stirling’s
asymptotic formula

= gz w2 Y T (— wp)Tyj(wz).  (A13)
k=1 [(x+1)~2mx e *+xInx, (A21)

As a simple application, we setw;=w,=w in Eq. (A12): o integal in Eq(A20) can be evaluated using the saddle

n point approximation, in which one expands the exponent
lim > ?ki(W)Tkj(W):Tij(O): Sij (A14)  near its minimum ak=r? up to the second order:
n—oo k=1
r2+hr dX 20252
or setw; =w,=iR/2 in Eq. (A13): A~ lim f e~ (=), (A22)
1= W g.(A13) 11 e \/ﬁr
. iR iR
||m kZ]_ Tki(? Tkj ? :T|J(|R) (A15) Substitutingyz(x—rz)/r, one findS
n—oo K=
. . ) s hody o, 1 h
Note that if we interpreT;; as the matrix elements af, then n= —e V= > 1+d| —||, (A23
Eqg. (Al4) has a simple matrix form, —= N2T \/5
THw) T(w)=1, (A16) where ®(x) is the standard error function. Other TC sum

rules can be obtained through quite similar procedures. We
showing that matrixT is unitary. In the same matrix nota- omit the tedious derivations and simply list the results below:
tion, Eq.(A10) is rewritten as

1 h| he "™
fow)=T(— o= | 1+ 0| —=| — —|, A24
THw)=T(—w) (A17) 2275 = on (A24)
which along with Eq.(A16) makes sense sinc&(—w) 2
should be the inverse af(w). AS _ € (A25)
Equations (A14) and (A15) are examples of TC sum 12— \/ﬁ
rules. They are frequently used in analyzing the bulk plasma.
Near the edge, we often encounter TC summations of a dif- o h?12
ferent type: BS,= i (hR=-m/2) (A26)
V27R ’
(r+h/2)?
s _ i T (rel\T (rei? —h?/2
Aj=lim 3 Tare!)Ty(re!, - (A19 LR o
12 V27R .
(r+h/2)? .
BS = lim To(re DT, (rei?). A19 Note that the above results are correct only asymptotically
v kz'l (re ) Tig(re™) (A19) for R—o (R=2r6).

In a double edged system, we encounter the same type of
Here, the superscrig denotes the single edged system andTC summation, except that the lower limit is changed from
6=R/2r. The difference between the bulk TC sum and edgek=1 to k= (r —h/2)?:
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(r+hi2? . ' 1+ Oixs||A B A B
Aﬂ =lim 2 , Tki(relg)Tkj(relg), (A28) —cA! 1S><S C D = Os><r D—-CA B!’
r—oo k:(r—h/Z) (BZ)
(v hi2y? Taking the determinant of both sides of E§2), Eq. (B1)
d__ i i ’ .
Bi=lm X Tare')Tgre').  (A29)  foows immediately.

—o k=(r—h/2)? '
' (r—hiz) Schur’s theorem has a very useful corollary: for any ma-

Correspondingly, we havéhe superscriptl denotes double tricesJyxs andKs, ., one has

edges d _
e(l_JK)rXr_de(l_K‘])sXs- (B3)
h
Al =d| —], (A30)  We can prove this by a very similar method. First we con-
\/E sider
_h2
AgZZCI)(L _ he™" /2, (A31) e =3 Lixs J }:{(1_‘]K)r><r Orxs ,
\/E N2 Osxr 1sxs)| K lsxs K Lsxs
(B4)
AJ,=0, (A32)
which tells us that
—h?2
BY,=——— sin(hR)e'("R~772), (A33) 1
o 27R det " =de(1—JK), (B5)
K 1S><S
. e h?r2 ‘
B, =——coghR)e/("R-72), (A34)  on the other hand, if we consider
2 V27R )
1r><r 0r><s 1r><r J _ 1r><r ‘]
APPENDIX B: SCHUR'S THEOREM -K 1]l K lexs - Osw; 1-KJJ| (B6)
For any four matrice\, «, , B;xs, Csx;, andDgys, if A .
is not singular, Schur’s theorem states we obtain
A B 1, J
_ —_ca-1 d =def(1—-KJ . B7
de{c | =detA de(D—CA™'B). (B1) e{ K 1., 96t Jsxs (B87)

The proof is straightforward. We consider the following ma-A combination of Egs(B5) and (B7) results in Eq.(B3).
trix identity: Letting J=y,KT in Eq. (B3), we obtain Eq(4.7).
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