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Effective attraction between like-charged colloids in a two-dimensional plasma
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The existence of attractions between like-charged colloids immersed in ionic solution has been discovered in
recent experiments. This phenomenon contradicts the predictions of Derjaguin-Landau-Verwey-Overbeek and
indicates a failure of mean-field theory. We study a toy model based on a two-dimensional one-component
plasma, which is exactly soluble at one particular coupling constant. We show that colloidal interaction results
from a competition between ion-ion repulsion and longer ranged ion-void attraction.
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I. INTRODUCTION

Recent experiments show convincingly the existence
attractions between like-charged colloids immersed in io
solution, in particular in the vicinity of a glass wall or whe
the colloids are confined between glass walls@1,2#. This re-
markable counterintuitive phenomenon is inconsistent w
the well established theory of Derjaguin, Landau, Verw
and Overbeek~DLVO! and has generated various theoreti
interpretations.

It was shown@3# that counterion correlation forces, be
cause of the long range of the electrostatic potentials,
usually not pairwise additive. Many-body effects@4# and
Coulomb depletion forces@5# have been invoked to explai
attractive forces between like-charged macroions. An ex
demonstration @6# proved that the nonlinear Poisso
Boltzmann mean-field equation cannot give attractions in
case of Dirichlet boundary conditions. The argument w
extended to a broader class of models@7# and boundary con-
ditions @8#. Recently, there was a significant attempt bas
on nonequilibrium hydrodynamic effects@9#.

In this paper, we solve a two-dimensional~2D! one-
component plasma model exactly at a certain coupling c
stant following the method of Jancovici@10#. We have found
a semianalytic method that extends the exact solution to
case in which colloidal particles are present. We treat
colloids in the plasma as empty regions~voids! from which
the ions are excluded. The colloid may have fixed charg
its center. The analytic results obtained for small-sized c
loids show that while the ion-ion repulsion, which varies
e2R2

(R is the separation distance! in this particular 2D
model, is strong at short distances, the ion-void attract
which varies asR2e2R2

, becomes dominant at large di
tances. The latter property is not normally found in conve
tional mean-field approximations, and must come fro
strong correlation effects. For large-sized colloids, we a
have numerical results that qualitatively agree with the a
lytic ones. The present state of understanding of how to t
fluctuations beyond mean-field theory reliably is not ve
good despite the fact that this is an old problem@11–13#.
Thus, our exact results may serve as a testing ground
more sophisticated approximation schemes. In addit
since this is a 2D model, the results are of interest in c
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nection with the problem of interactions among linear po
electrolyte molecules@14#.

In the sections that follow, we shall first review th
plasma model in Sec. II. Then in Secs. III and IV we calc
late the ion-ion and void-void interactions in the plasma s
tem, respectively. Section V puts the above results toge
by treating the colloid as an empty region plus a fixed i
charge at the center. We have relegated the technical de
as much as possible to the Appendixes.

II. THE PLASMA SYSTEM

We start by reviewing the exact solution for the on
component 2D plasma system@10#. Our approach is to map
the classical plasma system into a quantum Hall syst
Such an analogy allows one to describe the interacting i
in terms of noninteracting electrons occupying certain qu
tum obitals and subsequently use tools already develo
The advantage of this approach will become clearer la
when we extend the same analogy to more complicated
tems with fixed ion charges or/and empty regions presen

A. The quantum orbital language

The one-component 2D plasma system is composedn
simple ions embedded in a disk of uniform backgrou
charge. Each ion carries a charge of21; the disk has a
radiusr and an areal charge density ofr0. Throughout this
paper, we shall express all lengths in the unit ofl 0

51/Apr0. Thus, a unit circle contains unit amount of bac
ground charge, and the charge neutrality condition can
written simply as

n5r 2. ~2.1!

In two dimensions, it is convenient to use a complex num
z5x1 iy ~in units of l 0) to represent the location of (x,y).
Using zi to denote the position of thei th ion, we can solve
the 2D Poisson equation~in which the charges interact loga
rithmically rather than with the usual 3D 1/r interaction! @17#
and find the total Coulomb potential energy of the system

V5
1

2 (
i 51

n

uzi u22(
i , j

n

lnuzi2zj u. ~2.2!
©2001 The American Physical Society02-1
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Here the first term describes the attractions between the
and the background charge, and the second term repre
the mutual repulsions among the ions themselves.

At inverse temperatureb[1/kBT52, the Boltzmann fac-
tor reads:

e2bV5expS 2(
i 51

n

uzi u2DU)
i , j

n

~zi2zj !U2

. ~2.3!

Written in the above form, the Boltzmann factor can be ide
tified as the square of the determinant of a matrixM ,

e2bV5udetM u2, ~2.4!

with the matrix elements being the lowest Landau le
~LLL ! wave functions studied in connection with the qua
tum Hall effect@15#:

Mi j 5c i~zj ![
zj

i 21

ApG~ i !
e2uzj u

2/2. ~2.5!

The above wave function describes an electron occupy
the i th angular momentum orbital in the LLL. In this quan
tum language, detM is a Slater determinant and represe
the Laughlin wave function at filling factorn51, describing
a fully filled Landau level. Thus, the complicated Coulom
interactions are replaced by a simple Slater determinant.
determinant representation of the Boltzmann factor was
noted by Jancovici@10# prior to the discovery of the quantum
Hall effect. We recapitulate~and then extend! his argument
in more modern language.

B. The partition function

Armed with this powerful quantum analogy, we proce
to calculate the partition function of the system, by integr
ing out all the ionic degrees of freedom:

Z5)
i 51

n E dzie
2bV. ~2.6!

This is nothing more than the norm of the Laughlin wa
function, and hence can be computed exactly. Substitu
Eq. ~2.4! in Eq. ~2.6! and expanding the determinant, w
have

Z5)
i 51

n E dzi udetM u2

5)
i 51

n E dzi(
$P%

(
$Q%

~21!P1Q)
i 51

n

c̄Pi
~zi !cQi

~zi !,

~2.7!

whereP and Q are permutations of$1:n% (1:n is a short-
hand notation for 1,2, . . . ,n) that come from the expansion
of detM̄ and detM , respectively. In Eq.~2.7!, we have both
summations and integrations which respectively repres
the Coulomb interactions and the thermal averages. It is
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ful at this point to postpone treating the Coulomb intera
tions until after the thermal averages are done. Thus,
switch the order of the summations and integrations in
~2.7! so that

Z5(
$P%

(
$Q%

~21!P1Q)
i 51

n E dzi c̄Pi
~zi !cQi

~zi !

[(
$P%

(
$Q%

~21!P1Q)
i 51

n

^Pi uQi&, ~2.8!

where^ i u j & is the Dirac notation for the inner product of th
i th and j th LLL orbitals. Notice that the summations ove
$Q% can be identified as a matrix determinant:

(
$Q%

~21!P1Q)
i 51

n

^Pi uQi&5(
$R%

~21!R)
i 51

n

^ i uRi&5detO,

~2.9!

whereR[Q +P 21 is the composite permutation ofQ and
P 21, and theoverlap matrixO defined by

Oi j 5^ i u j & ~2.10!

is a matrix composed of LLL wave function inner produc
Here, just as previously, the complicated Coulomb inter
tions are again replaced by a simple matrix determinant.
nally, we substitute Eq.~2.9! into Eq. ~2.8! to obtain

Z5(
$P%

detO5n!detO. ~2.11!

The immaterial factor ofn! will be dropped henceforth.
Through the quantum analogy, the statistical problem is
duced to evaluating the overlap matrixO and its determi-
nant. This is particularly simple in the present case; beca
of orthonormality we know that matrixO is an identity ma-
trix.

C. The plasma edge

Near the plasma edge, physical properties are quite dif
ent from those in the bulk. This motivates us to study t
boundary effects separately. For simplicity, we are going
be mainly interested in asoft boundary condition, which re-
stricts the range of the ions’ angular momenta rather t
their positions. The ions can go anywhere in the comp
plane; nevertheless, they are most likely to be found insid
disk with radiusr 5An because their angular momenta a
bounded byn @recall that thel th LLL state has angular mo
mentum of (l 21) and peaks in a shellAl 21,r ,Al ]. The
advantage of using this type of boundary condition is app
ent: we can continue to use the same wave functions to
scribe the ions near the edge. What is implicitly assum
here is that the uniform background charge does not cea
the plasma edge; it extends to infinity. We also note tha
the thermodynamic limit (r→`) the circular plasma edge
becomes locally flat.
2-2
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EFFECTIVE ATTRACTION BETWEEN LIKE-CHARGED . . . PHYSICAL REVIEW E63 021402
One may also consider putting some ‘‘surface’’ charge
the plasma boundary. But, as indicated below, this effect
be absorbed in shifting the position of the boundary. W
assume the surface charge, if any, does not fluctuate.
pending on its sign, the boundary charge either increase
decreases the number of available angular momentum c
nels. This is more or less equivalent to varying the radiusr of
the plasma disk in a system with neutral boundary. Hen
without loss of generality, we may assume boundaries
neutral.

Another type of plasma system we want to address in
paper is a plasma strip with two parallel edges separate
h. This can be realized in the thermodynamic limit by
system of ions with angular momenta ranging fromr
2h/2)2 to (r 1h/2)2. The double edged system thus diffe
from a single edged systemonly in the momentum range. To
avoid redundancy, we shall use the single edged system
the example in our calculations. By changing the angu
momentum limits, the results can easily be transferred
double edged systems.

III. FIXED ION CHARGES IN A PLASMA

In this section, we shall apply the same method to
slightly more complicated plasma system, with one or t
ion charge~s! fixed at certain position~s!. The resulting parti-
tion function is conventionally called the one- or two-bo
density function. The physical significance is twofold. Fir
we can learn from these density functions about how the i
are distributed and how two ions are correlated. More imp
tantly, the fixed ion charges can be viewed as the limit
case of small-sized charged colloids. Thus, the results
tained in this section will provide us with many useful i
sights to the colloidal interactions.

A. The one-body density function

First we consider the one-body density function. We
the positionz15w and integrate out the remaining ionic d
grees of freedom,

Z(1)5)
i 52

n E dzie
2bVU

z15w

5)
i 52

n E dzi udetM u2U
z15w

5(
$P%

(
$Q%

~21!P1Q

3c̄P1
~w!cQ1

~w!)
i 52

n

^Pi uQi&. ~3.1!

The summations overP1 and $Q% then reduce to a matrix
determinant

(
P1

(
$Q%

~21!P1Qc̄P1
~w!cQ1

~w!)
i 52

n

^Pi uQi&52detO(1),

~3.2!

with the (n11)3(n11) matrix O(1) defined by
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O(1)[F O C†~w!

C~w! 0 G . ~3.3!

Here,O ~not to be confused withO(1)) is then3n overlap
matrix defined in Eq.~2.10!; C[(c1 ,c2 , . . . ,cn) is a row
vector of LLL wave functions representing the fixed io
charge, andC† is its conjugate transpose. Finally, the r
maining summations over$Pi ,(i 52:n)% in Eq. ~3.1! just yield
a trivial prefactor:

Z(1)5 (
$Pi ( i 52:n)%

2detO(1)52~n21!!detO(1). ~3.4!

To evaluate the determinant of matrixO(1), we apply
Schur’s theorem~discussed in detail in Appendix B! and find

Z(1)52detO(1)5detO det@C~w!O21C†~w!#131

5 (
k51

n

ck~w!c̄k~w!, ~3.5!

where we have used the fact that the overlap matrixO is an
identity matrix. Using Eq.~A7!, we convert the above serie
into translation coefficients~TCs! defined in Eq.~A6!:

Z(1)5 (
k51

n

ck~w!c̄k~w!5
1

p (
k51

n

uTk1~w!u2. ~3.6!

Now that the partition function is written in the form of a T
sum, we may use the TC sum rules listed in Appendix A
We consider the following two cases.

If the fixed ion is in the bulk of the plasma (w!r 5An),
we may take the limitn→` first and use TC sum rule~A14!
to obtain

Z(1)5
1

p
. ~3.7!

This tells us that deep in the bulk the ion density is const
and equal to the background charge density everywhere

Near the plasma edge, we assume the boundary is loc
at (r 1h/2) and the fixed ion is located atw5reiu, so that
the ion ish/2 away from the boundary. In this case, we c
use TC sum rule~A23! in Eq. ~3.6! to obtain

Z(1)s5
1

2p F11FS h

A2
D G . ~3.8!

Here, the superscripts means a single edged system~in con-
trast tod, which means double edged system! and F(x) is
the standard error function. As shown in Fig. 1, the ion de
sity indeed drops from its bulk value to zero upon cross
the soft plasma boundary~at h50).

B. The two-body density function

In calculating the one-body density function, we find th
a fixed ion charge amounts to an additional row and colu
in the overlap matrix. This result can be generalized for s
2-3
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tems with multiple fixed ion charges. In particular, we co
sider the two-body density function withz15w and z25w̄
fixed. The result is

Z(2)52detO(2), ~3.9!

whereO(2) is an (n12)3(n12) matrix:

O(2)[F O C†~w! C†~w̄!

C~w! 0 0

C~w̄! 0 0
G . ~3.10!

Similarly, using Schur’s theorem and Eq.~A7!, we can write
the correlation function in terms of TC sums:

Z(2)5detO detS FC~w!

C~w̄!
GO21@C†~w! C†~w̄!# D

232

5
1

p2 F (
k51

n

uTk1~w!u2G2

2
1

p2U(
k51

n

Tk1
2 ~w!U2

. ~3.11!

In the bulk of the plasma (w!r ), we assumew5 iR/2 so
that the two fixed ions areR apart. Inserting TC sum rule
~A14! and ~A15! into Eq. ~3.11!, and using Eq.~A9! for
T11( iR), we obtain

Z(2)5
1

p2 @12uT11~ iR!u2#5
1

p2 ~12e2R2
!. ~3.12!

The above result tells us that the Coulomb repulsion betw
the two ion charges is heavily screened by the other ions
becomes short ranged. Its decay has a Gaussian form, w
is much faster than the exponential form that DLVO theo
predicts.

Near the plasma edge, we assume the boundary is loc
at (r 1h/2) and the fixed ions are located atw5reiu andw̄,
whereu[R/2r so that the fixed ions areh/2 away from the
edge andR apart from each other. Using TC sum rules~A23!
and~A26! in Eq. ~3.11!, we obtain~for asymptotically large
R)

FIG. 1. The one-body density function near the plasma e
~length in units ofl 0).
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Z(2)s5
1

4p2 H F11FS h

A2
D G 2

2
2e2h2

pR2 J . ~3.13!

The above result shows that the ion-ion correlation funct
has a power law decay near the plasma edge. This is fu
mentally different from the bulk behavior, and is due to t
dipole moments induced by the sharp cutoff in angular m
mentum.

Finally, in the double edged system where the plas
edges are located at (r 6h/2), we may use TC sum rule
~A30! and ~A33! in Eq. ~3.11! to obtain~for asymptotically
largeR)

Z(2)d5
1

p2 FF2S h

A2
D 2

e2h2

2pR2
sin2~hR!G . ~3.14!

Here, we find the correlation is not only long ranged, b
oscillating with a period of 2ph21 as well.

C. Divalent ions

A divalent ion can be viewed as composed of two sim
ions occupying the same place. Here we want to calculate
two-body density function for a pair of divalent ions embe
ded in the monovalent plasma. Let us assumez15z25w and
z35z45w̄ are fixed, wherew5 iR/2, so that the two divalen
ions areR apart. Naively, one may follow Eq.~3.10! and
write down an (n14)3(n14) matrix:

Õ(4)[F O C†~z1! C†~z2! C†~z3! C†~z4!

C~z1! 0 0 0 0

C~z2! 0 0 0 0

C~z3! 0 0 0 0

C~z4! 0 0 0 0

G .

~3.15!

However, the matrixÕ(4) defined above is singular becau
z15z2 ~or z35z4). This singularity actually originates from
the Boltzmann factor in Eq.~2.3!, where we incorrectly in-
clude the self-interaction betweenz1 andz2 ~or z3 andz4).
To get around this problem, we must extract the singu
factors from the matrix determinant. More precisely, w
want to consider the following limits:

detO(4)[ lim
z2→z1

lim
z4→z3

detÕ(4)~z1 ,z2 ,z3 ,z4!

uz22z1u2uz42z3u2
. ~3.16!

To construct matrixO(4) from Õ(4), we subtractC(z1) in the
(n11)th row fromC(z2) in the (n12)th row in Eq.~3.15!.
The resulting (n12)th row then yields a factor of (z22z1):

lim
z2→z1

@C~z2!2C~z1!#5~z22z1!C8~z1!, ~3.17!

whereC8[(c18 ,c28 , . . . ,cn8), andc8 is the first derivative
of c. More precisely, following the usual procedure for th

e
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Hilbert space of analytic functions@15,16#, we take the de-
rivative to act only on the analytic part ofc and not on the
Gaussian factor. The latter represents the interaction with
background charge and does not possess the self-intera
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singularity.
The factors of (z̄22 z̄1) anduz42z3u2 can be extracted via

similar procedures and we are left with a matrix that loo
like
O(4)[F O C†~w! C†8~w! C†~w̄! C†8~w̄!

C~w! 0 0 0 0

C8~w! 0 0 0 0

C~w̄! 0 0 0 0

C8~w̄! 0 0 0 0

G . ~3.18!
sys-
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Applying Schur’s theorem and using various TC su
rules listed in Appendix 2, one finds

Z(4)52detO(4)

5
1

p4detF 1 0 e2R2/2 0

0 1 Re2R2/2 e2R2/2

e2R2/2 Re2R2/2 1 R

0 e2R2/2 R 11R2

G
5

1

p4 @~12e2R2
!22R4e2R2

#. ~3.19!

To compare the correlation functions of divalent ions a
simple ions~in the bulk case!, we plot Eqs.~3.12! and~3.19!
in Fig. 2. Clearly, the divalent ion has a larger ‘‘exchan
hole’’ near its origin.

IV. VOID COLLOIDS IN A PLASMA

In this section, we introduce two empty colloidal void
into the plasma system. We take the colloidal particle to b

FIG. 2. Comparison between the two-body density functions
divalent ions~the solid line! and simple ions~the dashed line! in the
bulk ~length in units ofl 0).
d

a

circular disk with finite radiusa, inside which ions are ex-
cluded. The presence of the voids clearly destroys the
tem’s azimuthal symmetry. As a result, different angular m
mentum orbitals intersect, and the overlap matrix is gener
not diagonal. It is the off-diagonal matrix elements that ma
the colloidal interactions nontrivial.

We shall fix the two voids atw andw̄, respectively. Fol-
lowing Eq. ~2.11!, we can write down the partition function
of the system as the determinant of the overlap matrix:

Z5detO. ~4.1!

Because the regions occupied by colloids are not acces
to the ions, their contribution to the overlap matrix should
excluded. Thus, in contrast to Eq.~2.10!, here we have

Oi j 5^ i u j &2^ i u j &w2^ i u j &w̄ , ~4.2!

where^ i u j &w means a partial inner product integrated ove
circle with radiusa centered atw. According to Eq.~A8!, Eq.
~4.2! can be explicitly evaluated as@18#

Oi j 5d i j 2F(
l 51

`

g l T̄i l ~w!Tjl ~w!1c.c.G , ~4.3!

whereg l is the incomplete gamma function defined in E
~A4!.

A. Analytic results

The off-diagonal matrix elements make the determinan
Eq. ~4.1! difficult to analyze. However, if the colloidal sizea
is small, we can treat them perturbatively. From Eq.~A4! we
know g i;O(a2i) whena→0. Thus, to the lowest order ina,
we can truncate the infinite summation in Eq.~4.3! at l 51:

Oi j 'd i j 2g1@ T̄i1~w!Tj 1~w!1Ti1~w!T̄j 1~w!#. ~4.4!

If we define a 23n matrix J as

J[FT11~w! T21~w! ••• Tn1~w!

T̄11~w! T̄21~w! ••• T̄n1~w!
G , ~4.5!

r

2-5
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Eq. ~4.4! may be rewritten in a matrix form:

O512J†g1J. ~4.6!

According to the corollary of Schur’s theorem@see Appendix
B, Eq. ~B3!#, we have

det~12J†g1J!n3n5det~12Jg1J†!232 . ~4.7!

The determinant of a 232 matrix is easy to calculate and th
result is~dropping terms with order higher thang1)

Z5detO'122S (
k51

n

uTk1~w!u2D g15122g1 , ~4.8!

where we have used the TC sum rule~A14!. Notice that the
above~first order! result isR independent. This is no acc
dent, because in order for the colloids to know the separa
distanceR, the Green’s function needs to be integrated o
both colloidal regions, which yields a term proportional
a4, appearing in at least the second order in perturba
theory.

In the second order approximation, we must keep te
proportional tog1 , g1

2, andg2. The procedure is quite simi
lar to the above, and the result is

Z'122S (
k51

n

uTk1~w!u2D g122S (
k51

n

uTk2~w!u2D g2

1F S (
k51

n

uTk1~w!u2D 2

2U(
k51

n

Tk1
2 ~w!U2Gg1

2 . ~4.9!

Compared to Eqs.~3.6! and~3.11!, we find that the first and
second order terms are, respectively, proportional to the o
and two-body density functions. Hence the colloidal vo
void interaction does not differ very much from the ion-io
interaction we studied earlier in Sec. III.

In the plasma bulk, we assumew5 iR/2 and use TC sum
rules ~A14! and ~A15! in Eq. ~4.9! to obtain

Z'122g122g21~12e2R2
!g1

2 ; ~4.10!

near the plasma edge~s!, we assumew5reiu (u5R/2r ) and
express Eq.~4.9! in terms of TC sum-rule results:

Zs,d'122A11
s,dg122A22

s,dg21@~A11
s,d!22uB11

s,du2#g1
2 ,

~4.11!

where the explicit forms forAs,d andBs,d for asymptotically
largeR can be found in Eqs.~A23!, ~A26!, ~A30!, and~A33!.

B. Numerical results

For large-sized colloids, the analytic results based on
small-a expansion may not be appropriate. We resort to
merical methods and use LU@19# factorization with partial
pivoting to evaluate the matrix determinants. We find th
~essentially! exact results can be obtained from relative
small matrix sizes.
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For colloidal voids immersed in the bulk of the plasm
our numerical results are presented in Fig. 3. For a variet
sizes we studied, no attraction is found, confirming our a
lytic predictions.

Near the plasma edge~s!, we find it more convenient to
use square shaped colloids in numerical calculation. We
sume the squares are of size 2a, centered atreiu andre2 iu,
respectively.@The plasma edge~s! are located at (r 6h/2).#
Defining d[a/r , we can calculate the overlap matrix in E
~4.2! as

Oi j 5d i j 2F E
r 2a

r 1a

drE
u2d

u1d
df

r i 1 j 21e2r2
ei ( j 2 i )f

pAG~ i !G~ j !
1c.c.G .

~4.12!

In the limit i; j ;r 2→`, the above integral can be evaluate
asymptotically. The result is

Oi j 'd i j 2C~u,d!
G„~ i 1 j !/2…

AG~ i !G~ j !
@F~r 1!2F~r 2!#,

~4.13!

where,

r 6[
~r 6a!22~ i 1 j !/211

Ai 1 j 22
;

C~u,d![
cos@~ i 2 j !u#sin@~ i 2 j !d#

~ i 2 j !p

@C(u,d) should be interpreted asd/p in the case ofi 5 j ]. In
practice, we keep increasingr until the numerical result be
comes independent ofr, which is found to occur approxi-
mately atr 560. The results shown in Fig. 4~for a single
edged system! and Fig. 5~for a double edged system! are
computed usingr 5100. In both figures, when the colloida
voids are far away from the edge~s! (h56.0), the curves are
similar to those in Fig. 3, namely, the repulsive interacti
has a Gaussian decay. As the colloids become closer to

FIG. 3. Numerical results for the free energy of colloidal voi
of radiusa in the bulk of plasma separated by a distanceR ~length
in units of l 0).
2-6
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EFFECTIVE ATTRACTION BETWEEN LIKE-CHARGED . . . PHYSICAL REVIEW E63 021402
plasma edge~s! ~smallerh), the repulsion starts to develop
long tail, in agreement with our analytic results.

V. CHARGED COLLOIDS IN A PLASMA

We now consider charged colloids in the plasma. In
simplest case, the charged colloid is taken to be an em
disk plus a fixed ion charge at the center. The ion-ion int
action and void-void interaction have been studied in Se
III and IV, respectively; both are repulsive. However, as
shall see in this section, the ion-void interaction is usua
attractive, and has a longer range. The competition betw
the repulsion and attraction results in a richer behavior
the charged colloidal interactions.

Following Eqs. ~3.9! and ~3.10!, we have the partition
function as follows:

Z(2)52detO(2), ~5.1!

O(2)[F O C†~w! C†~w̄!

C~w! 0 0

C~w̄! 0 0
G , ~5.2!

FIG. 4. Numerical results for the free energy of empty collo
of radius a51.0 and located a distanceh/2 away from a single
plasma edge as a function of their separationR ~length in units of
l 0).

FIG. 5. Numerical results for the free energy of empty collo
of radiusa51.0 separated by a distanceR in a plasma strip of width
h ~length in units ofl 0).
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whereC[(c1 ,c2 , . . . ,cn) is a row vector representing th
fixed ion charge at the colloidal center; then3n overlap
matrix O, according to Eq.~4.3!, is nondiagonal:

Oi j 5d i j 2F(
l 51

`

g l T̄i l ~w!Tjl ~w!1c.c.G . ~5.3!

A. Analytic results

If the colloidal sizea is small, we can obtain an analyti
expression. One may truncate the infinite series in Eq.~5.3!
at l 51:

Oi j 'd i j 2g1@ T̄i1~w!Tj 1~w!1Ti1~w!T̄j 1~w!#. ~5.4!

However, we notice that the (n11)th and (n12)th rows of
matrix O(2) in Eq. ~5.2! can be written as

O(n11) j
(2) 5c j~w!5

Tj 1~w!

Ap
, ~5.5!

O(n12) j
(2) 5c̄ j~w!5

T̄j 1~w!

Ap
. ~5.6!

If we multiply Eq. ~5.5! by Apg1T̄i1(w), multiply Eq. ~5.6!
by Apg1Ti1(w), and add them together to thei th row, the
off-diagonal part ofOi j in Eq. ~5.4! is canceled completely
Thus the final answer does not containg1. This is true even
if we do not make any truncations in Eq.~5.4!. Physically, it
originates from the fact that the first angular momentu
channel is occupied by the fixed ion, so it is not accessible
the free ions. Another way of saying this is that the fixed i
serves as a ‘‘Laughlin quasihole’’ in the quantum electr
system.

To obtain a nontrivial result, we consider the second
gular momentum channell 52:

Oi j 'd i j 2g2@ T̄i2~w!Tj 2~w!1Ti2~w!T̄j 2~w!#. ~5.7!

Applying Schur’s theorem, we have

Z(2)5detO detS FC~w!

C~w̄!
GO21@C†~w! C†~w̄!# D

232

[Z1Z2 . ~5.8!

We first concentrate on the second factorZ2. It describes the
two fixed ions~represented by wave functionsC and C†)
interacting through the plasma medium~represented by ma
trix O21). For small g2, the matrix O21 can be approxi-
mated by

Oi j
21'd i j 1g2@ T̄i2~w!Tj 2~w!1Ti2~w!T̄j 2~w!#, ~5.9!

and Z2 can be calculated to be@suppressing the~w! argu-
ments#
2-7
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Z2'F S (
k51

n

uTk1u2D 2

2U(
k51

n

Tk1
2 U2G12g2F S (

k51

n

uTk1u2D
3U(

k51

n

Tk1Tk2U2

1S (
k51

n

uTk1u2DU(
k51

n

T̄k1Tk2U2

2S (
k51

n

T̄k1
2 D S (

k51

n

Tk1T̄k2D S (
k51

n

Tk1Tk2D 2S (
k51

n

Tk1
2 D

3S (
k51

n

T̄k1Tk2D S (
k51

n

T̄k1T̄k2D G . ~5.10!

We can interpret the above result by thinking of the colloid
voids as a perturbation to the plasma system plus fixed i
The first square bracket in Eq.~5.10! is the result for the
unperturbed system, namely, the ion-ion interaction via
plasma medium. It is precisely the two-body density funct
we obtained in Eq.~3.11!. The second square bracket in E
~5.10! is the first order correction, namely, a fixed ion on o
site interacting with the colloidal void on theothersite. This
ion-void interaction is usually found to be attractive, a
since it involves higher order TC sums, its range is lon
than that of the ion-ion repulsion~see results below!. So far,
we have missed another first order effect, namely, the fi
ion interacting with the colloidal void on thesamesite. The
excess background charge underneath the void should re
the effective ionic charge somehow. It turns out that t
renormalization effect is captured precisely by the first fac
Z1 in Eq. ~5.8!:

Z15detO'122(
k51

n

uTk2u2g2 . ~5.11!

In the bulk plasma, we assumew5 iR/2 and use TC sum
rules ~A14! and ~A15! to obtain

Z(2)'~122g2!~12e2R2
!12R2e2R2

g2 . ~5.12!

In the above equation, the first term is the renormalized i
ion repulsion and the second term is the ion-void attracti
The attraction is proportional toR2e2R2

, which has a longer
range than the repulsion. This feature is not found in me
field approximations, and thus must be caused by the str
correlation effects. Notice that the void-void repulsion a
the renormalization of the ion-void attraction are both
second order, so they do not appear in Eq.~5.12!. The repul-
sion and attraction respectively dominate the short dista
and long distance behavior, and the minimum free ene
bF52 ln Z(2) occurs where the first derivative vanishes:

dZ(2)~R* !

dR
50 or R* 5A 1

2g2
. ~5.13!

Figure 6 plots the calculated free energy vsR for various
values ofa. Note that, wheng2 is small (a50.6), Eq.~5.13!
predicts that the location of the free energy minimum is
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away from the origin, in which case the attraction is strong
suppressed by the decaying factore2R2

, thus becoming vir-
tually invisible.

Near the plasma edge, we use TC sum rules~A23!
through~A27! to obtain~for asymptotically largeR)

Z(2)s'F ~A11
s !22

e2h2

2pR2G
12g2F ~A11

s h21A22
s !e2h2

2~2h/A2p!e23h2/2

2pR2

1A11
s S e2h2

A2p
2A11

s A22
s D G . ~5.14!

Similarly, for the double edged system, we use TC sum ru
~A30! through~A34! to obtain

Z(2)d'F ~A11
d !22

e2h2

2pR2
sin2~hR!G

12g2H @A11
d h2cos2~hR!1A22

d sin2~hR!#e2h2

2pR2

2~A11
d !2A22

d J . ~5.15!

B. Numerical results

Our numerical results for charged colloids in the bu
case are plotted in Fig. 7. Whena is small (a50.620.8) the
numerical results agree very well with the analytic ones p
sented in Fig. 6. However, whena is large (a51.0), the two
differ significantly in that the numerical free energy has
additional secondary maximum. This peak reflects the e
longer ranged, second order effects that are not accounte
in the analytic studies.

We also tried putting double ion charges at the cente
each colloid. This case is very similar to the divalent io

FIG. 6. Analytic results for the free energy vs separation d
tanceR of singly charged colloids in the bulk of the plasma~length
in units of l 0).
2-8
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that are studied in Sec. III C. Our numerical results are p
sented in Fig. 8, where the colloidal sizes are chosen to
A2 times as large as those in Fig. 7, so that the two figu
are comparable. We see that the qualitative behavior is v
similar. The attraction minimum stays further out.

Near the plasma edge, we use squares to represent c
dal particles as we did in Sec. IV B. The numerical resu
for two different sizes of colloids are presented in Fig. 9 a
Fig. 10. In case I (a50.8, Fig. 9!, when the colloids are fa
away from the edge (h55.0) they repel; as they come clos
to the edge (h52.3) they start to attract each other within
certain range (R,2.25), but beyond that range they still r
pel; at a particular point (h51.5), the range of the attractio
seems to extend to infinity; finally, when they are too clo
to the edge (h50.8), due to insufficient screening, a lon
range repulsion is found. In case II (a50.9, Fig. 10!, the
colloids are larger in size and attract each other even in
bulk (h55.0); the attraction becomes deeper (h52.0) and
longer ranged (h51.3) as the colloids move toward th
edge.

Figure 11 shows the free energy of colloids in a dou
edged system. When the two boundaries are widely se
rated (h55.0), the colloids repel; as the separation d
creases, the free energy develops a long oscillating

FIG. 7. Numerical results for the free energy vs separation
tanceR of singly charged colloids of radiusa in the bulk of the
plasma~length in units ofl 0).

FIG. 8. Numerical results for the free energy vs separation
tanceR of doubly charged colloids of radiusa in the bulk of the
plasma~length in units ofl 0).
02140
-
e
s
ry

loi-
s
d

e

e

e
a-
-
il.

These results are consistent with the analytic results. N
that the oscillation ‘‘wavelength,’’ according to Eq.~5.15!, is
set by the strip widthh, and is independent of the sizea of
the colloids. This conclusion is confirmed by Fig. 12.

Finally, Fig. 13 shows the results for doubly charged c
loids near a single plasma edge. They are qualitatively si
lar to those shown in Fig. 10.

C. Where does the colloid stay?

To better understand the charged colloidal interactio
especially near the plasma edge, it is instructive to le
where they prefer to stay in the plasma. We put a char
colloid atw5reiu, which ish/2 away from the plasma edg
at (r 1h/2), and calculate the partition function to be

Z(1)s52detO(1), ~5.16!

O(1)5F O C†~w!

C~w! 0 G , ~5.17!

where then3n overlap matrixO is

-

-

FIG. 9. Numerical results for the free energy vs separation
tanceR of singly charged colloids near a single plasma edge; cas
a50.8 ~length in units ofl 0).

FIG. 10. Numerical results for the free energy vs separat
distanceR of singly charged colloids near a single plasma ed
case II,a50.9 ~length in units ofl 0).
2-9
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Oi j 5d i j 2(
l 51

`

g l T̄i l ~w!Tjl ~w!. ~5.18!

It can be shown that the first angular momentum channe
blocked by the fixed ion charge so that the final answer d
not depend ong1. For smalla, we truncate the infinite sum
mation in Eq.~5.18! at l 52 and use Schur’s theorem to fin

Z(1)s'F12(
i 51

n

uTi2u2g2GF(
i 51

n

uTi1u21U(
i 51

n

T̄i1Ti2U2

g2G
5A11

s 1S e2h2

2p
2A11

s A22
s D g2 . ~5.19!

Figure 14 shows the numerical results obtained fo
square charged colloid. We plot the free energybF as a
function of h for three different sized squares. In all cas
we find the colloid is attracted to a free energy minimu
near the plasma edge~at h50). For h,0, the free energy
quickly blows up. This tells us that the colloid prefers not
leave from the plasma edge, because its fixed charge i
tracted by the background charge and prefers to be in

FIG. 11. Numerical results for the free energy vs separa
distanceR of singly charged colloids near double plasma edgesa
50.8 ~length in units ofl 0).

FIG. 12. Numerical results for the free energy vs separa
distanceR of singly charged colloids near double plasma edgesh
51.5 ~length in units ofl 0).
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lowest available angular momentum channel. The optim
distanceh* is in the range in which attraction between co
loids occurs.

VI. SUMMARY

In this paper, we considered a strongly coupled (b52)
2D one-component plasma model and calculated the ef
tive interaction between two colloids both in the bulk a
near boundaries. Our calculations show that the interac
between colloids results in a competition among the ion-
and void-void repulsions and the ion-void attraction. While
is somewhat difficult to assign a clear and simple physi
mechanism to the net attraction, the model clearly conta
both excluded volume effects analogous to those that p
duce attraction in hard sphere systems and also strong
linear ~and fluctuating non-mean-field! screening of the long
range Coulomb forces. Our~essentially exact! numerical re-
sults also show that proximity to the boundary of the plas
enhances the strength and range of the attraction. Th
presumably due to softer fluctuation modes available n
the edge of the incompressible plasma.

In this paper, we have assumed a logarithmic poten
among the ions. In@17#, we argued that this is not entirel
unfaithful to the real physical system. The fact that t

n

n

FIG. 13. Numerical results for the free energy vs separat
distanceR of doubly charged colloids near a single plasma ed
a51.2 ~length in units ofl 0).

FIG. 14. Numerical results for the free energy for one sing
charged colloid near a single plasma edge~length in units ofl 0).
2-10
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EFFECTIVE ATTRACTION BETWEEN LIKE-CHARGED . . . PHYSICAL REVIEW E63 021402
plasma has one component rather than two is a more se
limitation which we hope to remedy in the future. Althoug
our model is oversimplified, the exact results provide use
insights into the problem, and can serve as a testing gro
for approximation schemes currently in use.
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APPENDIX A: PROPERTIES OF LOWEST LANDAU
LEVEL WAVE FUNCTIONS

A convenient formulation of quantum mechanics with
the subspace of the lowest Landau level was developed
Girvin and Jach@15,16#. Here, we follow their formalism
and summarize some important properties that are freque
used throughout the paper.

1. Orthonormality and completeness

The i th LLL wave function is defined as

c i~z!5
1

ApG~ i !
zi 21e2uzu2/2. ~A1!

These LLL wave functions are orthonormal:

^ i u j &5E dz c̄ i~z!c j~z!5d i j . ~A2!

Sometimes, we want to calculate a partial inner product~the
overlap integrated over part of the entire plane!, and the re-
sult is generally not diagonal. However, if the integrati
region has azimuthal symmetry, the conservation of ang
momentum guarantees an exception. As an example, le
take the region to be a circle with radiusa centered at the
origin ~denoted by the subscript!,

^ i u j &05E
0

a

rdrE
0

2p

df
r i 1 j 22e2r2

ei ( j 2 i )f

pAG~ i !G~ j !
5d i j g i ,

~A3!

where the incomplete gamma functiong i is defined as

g i[
1

G~ i ! E0

a2

du e2uui 21512e2a2S (
k50

i 21
a2k

k! D . ~A4!

Notice that in the limita→0g i;O(a2i).
From Eq.~A1!, it is clear that any wave function in th

LLL can be written in the form

c~z!5 f ~z!e2uzu2/2, ~A5!
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where f (z) is an analytic function. Thus the subspa
spanned by the LLL wave functions is isomorphic to t
Hilbert space of analytic functions@15,16#. An example is
the wave functionc i(z) with its argument translated by
vectorw:

e( z̄w2zw̄)/2c i~z1w!5(
j 51

`

Ti j ~w!c j~z!. ~A6!

Here, the extra pure phase factor in front ofc i(z1w) is
needed to cancel the additional nonanalytic part generate
the translation, so as to retain the translated wave func
within the LLL.

2. Translation coefficients

The linear coefficientsTi j defined in Eq.~A6! are termed
translation coefficients. Settingz50 in Eq. ~A6!, we find

c i~w!5(
j 51

`

Ti j ~w!c j~0!5
Ti1~w!

Ap
. ~A7!

Thus the LLL basis functions are just special cases of T
Another useful application of the TC is to calculate the p
tial inner product on a circle with radiusa centered atw
Þ0 ~denoted by the subscript!:

^ i u j &w5E
uzu,a

dz c̄ i~z1w!c j~z1w!

5E
uzu,a

dz(
k,l

T̄ik~w!c̄k~z!c l~z!Tjl ~w!

5(
k,l

T̄ik~w!^ku l &0Tjl ~w!5(
l 51

`

g l T̄i l ~w!Tjl ~w!.

~A8!

The TCs can be evaluated explicitly. We multiply b
c̄k(z) on both sides Eq.~A6!, and integratez over the entire
plane. On the right hand side, this picks out one particu
Tik from the summation because of the orthonormality:

Tik~w!5E dz e( z̄w2zw̄)/2c̄k~z!c i~z1w!

5
e2uwu2/2

pAG~ i !G~k!
E dz e2uzu22zw̄z̄k21~z1w! i 21

5
e2uwu2/2

pAG~ i !G~k!
E dz e2uzu2F(

t50

`
~2w̄! tzt

t! G z̄k21

3F (
s51

i

Cs21
i 21zs21wi 2sG

5AG~ i !G~k!~21!kŵi 2ke2uwu2/2

3 (
s51

min(i ,k)
~21!suwu i 1k22s

G~s!~ i 2s!! ~k2s!!
, ~A9!
2-11
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where, in the third equation, we used Taylor and binom
expansions, and in the fourth equation we used orthonorm
ity ~A2!. Equation~A9! immediately tells that the TCs hav
the following inversion symmetry:

Ti j ~w!5T̄j i ~2w!5Tji ~2w̄!. ~A10!

Another important property of the TC arises when o
composes two successive translations:

Ti j ~w11w2!5e(w̄1w22w1w̄2)/2(
k51

`

Tik~w1!Tk j~w2!.

~A11!

On using Eq.~A10!, this becomes

Ti j ~w11w2!5e(w̄1w22w1w̄2)/2(
k51

`

T̄ki~2w1!Tk j~w2!

~A12!

5e(w̄1w22w1w̄2)/2(
k51

`

Tki~2w̄1!Tk j~w2!. ~A13!

As a simple application, we set2w15w25w in Eq. ~A12!:

lim
n→`

(
k51

n

T̄ki~w!Tk j~w!5Ti j ~0!5d i j , ~A14!

or setw15w25 iR/2 in Eq. ~A13!:

lim
n→`

(
k51

n

TkiS iR

2 DTk jS iR

2 D5Ti j ~ iR!. ~A15!

Note that if we interpretTi j as the matrix elements ofT, then
Eq. ~A14! has a simple matrix form,

T†~w!T~w!51, ~A16!

showing that matrixT is unitary. In the same matrix nota
tion, Eq. ~A10! is rewritten as

T†~w!5T~2w! ~A17!

which along with Eq.~A16! makes sense sinceT(2w)
should be the inverse ofT(w).

Equations ~A14! and ~A15! are examples of TC sum
rules. They are frequently used in analyzing the bulk plas
Near the edge, we often encounter TC summations of a
ferent type:

Ai j
s [ lim

r→`
(
k51

(r 1h/2)2

T̄ki~reiu!Tk j~reiu!, ~A18!

Bi j
s [ lim

r→`
(
k51

(r 1h/2)2

Tki~reiu!Tk j~reiu!. ~A19!

Here, the superscripts denotes the single edged system a
u[R/2r . The difference between the bulk TC sum and ed
02140
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TC sum is the following. Treated as a perturbation, collo
in the bulk mainly perturb the low angular momentum cha
nels. Such a perturbation has a discrete characteri
namely, only a small number of channels are strongly
fected. Colloids near the boundary, on the other hand, p
turb the high angular momentum channels. The perturba
has a continuum nature, namely, there are a large numbe
channels (r 22hr,k,r 21hr) that are weakly affected. As
a result, the evaluation of the edge TC sum inevitably
quires one to convert the discrete summation into a c
tinuum integral. For example, let us calculateA11

s :

A11
s 5 lim

r→`
(
k51

(r 1h/2)2
r 2k22

G~k!
e2r 2

' lim
r→`

E
0

r 21hr dx

A2px
e2x ln r 1x2x ln x2r 2

, ~A20!

where we have definedx[k21 and used Stirling’s
asymptotic formula

G~x11!'A2px e2x1x ln x. ~A21!

The integal in Eq.~A20! can be evaluated using the sadd
point approximation, in which one expands the expon
near its minimum atx5r 2 up to the second order:

A11
s ' lim

r→`
E

0

r 21hr dx

A2pr
e2(x2r 2)2/2r 2

. ~A22!

Substitutingy[(x2r 2)/r , one finds

A11
s 5E

2`

h dy

A2p
e2y2/25

1

2F11FS h

A2
D G , ~A23!

where F(x) is the standard error function. Other TC su
rules can be obtained through quite similar procedures.
omit the tedious derivations and simply list the results belo

A22
s 5

1

2 F11FS h

A2
D 2

he2h2/2

A2p
G , ~A24!

A12
s 5

e2h2/2

A2p
, ~A25!

B11
s 5

e2h2/2

A2pR
ei (hR2p/2), ~A26!

B12
s 5

he2h2/2

A2pR
ei (hR2p/2). ~A27!

Note that the above results are correct only asymptotic
for R→` (R[2ru).

In a double edged system, we encounter the same typ
TC summation, except that the lower limit is changed fro
k51 to k5(r 2h/2)2:
2-12



a

a-

n-

EFFECTIVE ATTRACTION BETWEEN LIKE-CHARGED . . . PHYSICAL REVIEW E63 021402
Ai j
d [ lim

r→`
(

k5(r 2h/2)2

(r 1h/2)2

T̄ki~reiu!Tk j~reiu!, ~A28!

Bi j
d [ lim

r→`
(

k5(r 2h/2)2

(r 1h/2)2

Tki~reiu!Tk j~reiu!. ~A29!

Correspondingly, we have~the superscriptd denotes double
edges!

A11
d 5FS h

A2
D , ~A30!

A22
d 5FS h

A2
D 2

he2h2/2

A2p
, ~A31!

A12
d 50, ~A32!

B11
d 5

e2h2/2

A2pR
sin~hR!ei (hR2p/2), ~A33!

B12
d 5

he2h2/2

A2pR
cos~hR!ei ~hR2p/2). ~A34!

APPENDIX B: SCHUR’S THEOREM

For any four matricesAr 3r , Br 3s , Cs3r , andDs3s , if A
is not singular, Schur’s theorem states

detFA B

C DG5detA det~D2CA21B!. ~B1!

The proof is straightforward. We consider the following m
trix identity:
95
ier

02140
-

F 1r 3r 0r 3s

2CA21 1s3s
GFA B

C DG5F A B

0s3r D2CA21BG .
~B2!

Taking the determinant of both sides of Eq.~B2!, Eq. ~B1!
follows immediately.

Schur’s theorem has a very useful corollary: for any m
tricesJr 3s andK s3r , one has

det~12JK !r 3r5det~12KJ !s3s . ~B3!

We can prove this by a very similar method. First we co
sider

F1r 3r 2J

0s3r 1s3s
GF1r 3r J

K 1s3s
G5F ~12JK !r 3r 0r 3s

K 1s3s
G ,

~B4!

which tells us that

detF1r 3r J

K 1s3s
G5det~12JK !r 3r ; ~B5!

on the other hand, if we consider

F1r 3r 0r 3s

2K 1s3s
GF1r 3r J

K 1s3s
G5F1r 3r J

0s3r 12KJ G , ~B6!

we obtain

detF1r 3r J

K 1s3s
G5det~12KJ !s3s . ~B7!

A combination of Eqs.~B5! and ~B7! results in Eq.~B3!.
Letting J5g1K† in Eq. ~B3!, we obtain Eq.~4.7!.
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c

f

of
t
.
d

bF52ln detO52tr ln$12@T~w!GT†~w!1T~w̄!GT†~w̄!#%

5(
k51

`
1

k
tr@T~w!GT†~w!1T~w̄!GT†~w̄!#k5(

k51

`
2

k
trGk

1F~w!52bF01bF~w!,
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